3.42 \(\int \sqrt{b \cos (c+d x)} (A+C \cos ^2(c+d x)) \sec ^3(c+d x) \, dx\)

Optimal. Leaf size=76 \[ \frac{2 A b^2 \sin (c+d x)}{3 d (b \cos (c+d x))^{3/2}}+\frac{2 b (A+3 C) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d \sqrt{b \cos (c+d x)}} \]

[Out]

(2*b*(A + 3*C)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2])/(3*d*Sqrt[b*Cos[c + d*x]]) + (2*A*b^2*Sin[c + d*x
])/(3*d*(b*Cos[c + d*x])^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0892076, antiderivative size = 76, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.121, Rules used = {16, 3012, 2642, 2641} \[ \frac{2 A b^2 \sin (c+d x)}{3 d (b \cos (c+d x))^{3/2}}+\frac{2 b (A+3 C) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d \sqrt{b \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[b*Cos[c + d*x]]*(A + C*Cos[c + d*x]^2)*Sec[c + d*x]^3,x]

[Out]

(2*b*(A + 3*C)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2])/(3*d*Sqrt[b*Cos[c + d*x]]) + (2*A*b^2*Sin[c + d*x
])/(3*d*(b*Cos[c + d*x])^(3/2))

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 3012

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*Cos[e
+ f*x]*(b*Sin[e + f*x])^(m + 1))/(b*f*(m + 1)), x] + Dist[(A*(m + 2) + C*(m + 1))/(b^2*(m + 1)), Int[(b*Sin[e
+ f*x])^(m + 2), x], x] /; FreeQ[{b, e, f, A, C}, x] && LtQ[m, -1]

Rule 2642

Int[1/Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[Sin[c + d*x]]/Sqrt[b*Sin[c + d*x]], Int[1/Sqr
t[Sin[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \sqrt{b \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx &=b^3 \int \frac{A+C \cos ^2(c+d x)}{(b \cos (c+d x))^{5/2}} \, dx\\ &=\frac{2 A b^2 \sin (c+d x)}{3 d (b \cos (c+d x))^{3/2}}+\frac{1}{3} (b (A+3 C)) \int \frac{1}{\sqrt{b \cos (c+d x)}} \, dx\\ &=\frac{2 A b^2 \sin (c+d x)}{3 d (b \cos (c+d x))^{3/2}}+\frac{\left (b (A+3 C) \sqrt{\cos (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{3 \sqrt{b \cos (c+d x)}}\\ &=\frac{2 b (A+3 C) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d \sqrt{b \cos (c+d x)}}+\frac{2 A b^2 \sin (c+d x)}{3 d (b \cos (c+d x))^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.174358, size = 56, normalized size = 0.74 \[ \frac{2 b \left ((A+3 C) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )+A \tan (c+d x)\right )}{3 d \sqrt{b \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[b*Cos[c + d*x]]*(A + C*Cos[c + d*x]^2)*Sec[c + d*x]^3,x]

[Out]

(2*b*((A + 3*C)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] + A*Tan[c + d*x]))/(3*d*Sqrt[b*Cos[c + d*x]])

________________________________________________________________________________________

Maple [B]  time = 4.084, size = 292, normalized size = 3.8 \begin{align*} -{\frac{2\,b}{3\,d} \left ( -2\,A\cos \left ( 1/2\,dx+c/2 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-2\,{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1} \left ( A+3\,C \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+A\sqrt{ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticF} \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) ,\sqrt{2} \right ) +3\,C\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \right ) \sqrt{b \left ( 2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}{\frac{1}{\sqrt{-b \left ( 2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}- \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2} \right ) }}} \left ( 2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) ^{-1} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{b \left ( 2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*cos(d*x+c)^2)*sec(d*x+c)^3*(b*cos(d*x+c))^(1/2),x)

[Out]

-2/3*(-2*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2-2*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)
^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(A+3*C)*sin(1/2*d*x+1/2*c)^2+A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(
1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*
x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))*b*(b*(2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^
2)^(1/2)/(-b*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)/sin(1/2*d*x+1/2*c
)/(b*(2*cos(1/2*d*x+1/2*c)^2-1))^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sqrt{b \cos \left (d x + c\right )} \sec \left (d x + c\right )^{3}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^3*(b*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + A)*sqrt(b*cos(d*x + c))*sec(d*x + c)^3, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (C \cos \left (d x + c\right )^{2} + A\right )} \sqrt{b \cos \left (d x + c\right )} \sec \left (d x + c\right )^{3}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^3*(b*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral((C*cos(d*x + c)^2 + A)*sqrt(b*cos(d*x + c))*sec(d*x + c)^3, x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)**2)*sec(d*x+c)**3*(b*cos(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sqrt{b \cos \left (d x + c\right )} \sec \left (d x + c\right )^{3}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^3*(b*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)*sqrt(b*cos(d*x + c))*sec(d*x + c)^3, x)